ESE-835 Materials Science and Engineering

Description

- 1. Energy systems engineering is a broad field encompassing energy storage systems alternative energy technologies, environmental compliance, energy efficient building, etc.
- 2. Students from multidisciplinary background are selected for MS ESE program, hence it is essential to impart basic knowledge related to materials science and engineering for effective research in energy materials.
- 3. The courses being offered in energy systems engineering department aim to train students to become outstanding researchers and professionals. To fulfill the objective, students must possess sound knowledge about fundamental characteristics of a variety of materials including metals, ceramics, polymers, semiconductors, etc.
- 4. This engineering course presents a broad multidisciplinary approach to understand and manipulate the electrical, optical, thermal and magnetic properties of materials and their applications in energy systems.
- 5. This course is proposed as an elective course for MS Energy Systems Engineering, MS Thermal Energy Engineering and MS Electrical Engineering (Power).
- 6. Various lab facilities for materials research are available at USPCASE, e.g. advance energy materials lab, energy storage lab, biofuel lab, solar lab, synthesis lab, etc. This new course will impart necessary basic knowledge to effectively utilize these facilities for quality research.

Educational Objectives

The objectives of this "Materials Science and Engineering" course are:

- 7. To equip students with the necessary materials science and engineering knowledge, skills and understanding to pursue successful careers in both industrial and research environments.
- 8. To describe the foundations and energy applications of materials science for engineering students as predicated upon the structure-processing-properties paradigm.

9. To provide knowledge on how the physical properties of metals, ceramics polymers and composites are correlated with their internal structures (on atomic, molecular, crystalline, micro- and macro- scales) and operational conditions (mechanical, thermal, chemical, electrical and magnetic).

Outcomes

10. The students will be given broad knowledge of properties and applications of various materials for energy applications, to produce quality materials scientists and good material researchers and engineers for industry.

Course Contents

Detailed Course Contents of the course are:

No.	Topics	Text Book	Contact
			Hours
1	Introduction and significance of materials	A, B	3
	science and engineering for energy applications		
	What is materials science and engineering		
	Classification of materials based on function		
	and structure		
	Material design and selection for energy		
	applications		
2	Atomic structure, arrangement and imperfections	A, B	8
	Bonding and arrangement, binding energy and		
	interatomic spacing		
	Ionic arrangements, crystal structure and		
	diffraction		
	Imperfections in atomic and ionic		
	arrangements, defects and dislocations		
	Atoms and ions movement in materials		

3	Phase diagrams, phase transformations and heat	A,C	10
	treatment		
	Phase rule and phase diagrams, solid		
	solubility, isomorphous phase diagrams,		
	relationship between properties and phase		
	diagrams, diffusion in solids.		
	Three stages of annealing, Control of		
	annealing, annealing and material processing		
	Principles of solidification, nucleation,		
	controlled nucleation, growth mechanisms,		
	solidification time and dendrite size, cooling		
	curves, solidification defects, microstructural		
	evolution, aging temperature and time, Aging		
	procedures.		
4	4 Properties of materials		10
	Electronic and electrochemical properties of		
	materials		
	Magnetic properties		
	Mechanical properties		
	Thermal properties		
5	Materials for energy applications	C, D	14
	Materials for renewable energy applications		
	Semiconductor materials in solar cells,		
	polymers and composites used in 3 rd and 4 th		
	generation solar cells, construction materials		
	for energy efficient building, alloys, carbon		
	fibres and glass fibres for wind turbines,		
	Materials for thermal applications		
	Alloys and coatings for gas turbines, thermal		
	barrier coatings, materials for thermal		

reforming applications, materials for thermal	
power plants.	
Materials for electrical applications	
Polymers and composites used in insulation	
systems and microelectronics, electronic	
materials and magnetic materials.	
Total	45

- 11. Details of lab work, workshops practice (if applicable). N/A
- 12. Recommended Reading (including Textbooks and Reference books).

S. No.	Title	Author(s)	Assigned Code	Remarks
1.	The Science and	Donald R. Askeland	Α	Text
	Engineering of Materials	Sixth Edition		
2.	Materials Science and	William D. Callister, Jr	В	Text
	Engineering: An	Eighth Edition		
	Introduction			
3.	Ceramics for environmental	Aldo Bocaccani,		
	and energy applications	Ceramic transaction	С	Text
		Volume 217		
4.	Energy Materials	Duncan W.		Text
		Bruce, Dermot O'Hare	D	
		, Richard I. Walton	Б	
		Wiley		
5.	Introduction to materials	William F. Smith	E	Ref
	science for engineers	6 th Edition		
6.	Ceramic Materials: Science	C. Barry Carter and M.	F	Ref
	and Engineering	Grant Norton		
7.	Phase transformations in	David A. Porter	G	Ref
	metals and alloys			

8.	Technology of Engineering	M.Phillip, W. Bolton	Н	Ref
	Materials			